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Abstract

Cryptocurrency appeared as an interesting technology that promised to revolutionize the pay-

ment system. But over time, cryptocurrencies have been backed into a corner and con�ned to store

of value speculation. Cryptocurrencies are almost never used as a means of payment and most

transactions only take place through centralized exchange systems. Here we introduce a feeless

cryptocurrency based on a block-lattice design with asynchronous transactions and block con�r-

mations. Flink is designed for high transaction speeds of more than 40000 transactions per second

with low latency of around 3 seconds or less. With these features, Flink is the ideal cryptocurrency

for consumer transactions as well as high-frequency and zero-fee business transactions. In terms of

security, all cryptographic elements are integrated into a replaceable design so that cryptographic

functions can be swapped out in case of quantum security requirements.
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I. INTRODUCTION

Distributed ledger technology (DLT) (Scardovi [1], Maull et al. [2]) has been on the rise

since the introduction of Bitcoin in Nakamoto [3]. Since Bitcoin, many new and promising

DLT projects have been introduced, but none have truly achieved global adaptation as a

payment system. DLT-based currencies or cryptocurrencies have mostly been isolated to act

as stores of value, much like gold, and the idea of a global, fair and cheap payment system has

mostly been abandoned. This is due to government regulations, but also high transaction

fees and slow transaction veri�cations. For a DLT currency to be truly e�ective and better

than government-backed currencies, transaction speeds must be near-instantaneous with

zero or negligible fees. Without this improvement, DLT currencies o�er no real value to the

public or consumers, and thus no reason to use them.

A. Motivation

Although many new DTL technologies have been introduced since the launch of Bitcoin.

The actual use of a cryptocurrency as a payment system is still lacking as more and more

projects gain traction as a DeFI (decentralised �nance) use case. Therefore, there is still a

lot of room for improvement.

The perfect payment system is:

� Feeless or almost zero fee: Zero fee makes sending money attractive and enables various

business opportunities.

� Fast: Low latency is important to enable fast payments for goods.

� Inexpensive to operate: The system must be available and easy to operate.

� Secure: Security is of course of paramount importance, as trust in the system is

required.

Nano (LeMahieu [4]) was one of the �rst DAG (Directed Acyclic Graph) (Devarajan and

Karabulut [5]) based cryptocurrencies that promised all these features. DAG is now imple-

mented in many projects alike (Popov [6], Churyumov [7]).The DAG-based cryptocurrencies

have a performance advantage in that transactions can be con�rmed asynchronously, rather
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Figure 1: Block-lattice data structure.

than synchronously as in a linear system like the blockchain. This drastically lowers trans-

action con�rmation times, making them mostly instantaneous (in the range of 1-3s) and

also improves transaction throughput to over 5000 tps. Feeless DAG systems achieve most

of these goals, but availability and stability su�er from such a design. Without transaction

fees, DDOS attacks are very cheap, and recent attacks on the Nano network have further

illustrated this vulnerability.

II. BASIC CONCEPT

Here we introduce Flink, a zero fee, high speed and secure network that is optimized for

enterprise use, but can also be run by individuals on commodity hardware. The system is

optimized for fast transactions and is based on a peering algorithm that connects the most

in�uential nodes in a way that minimizes block con�rmation latency. The system follows a

similar architecture to Nano, which is based on a block lattice. Each account has its own

blockchain, which is shown on Figure 1. Here, the account chain can only be updated by

the account holder. Since the blockchain of the accounts can be changed independently, we

do not need a common block to �ll up with transactions and the con�rmation latency is
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greatly reduced.

A. Account Based

Instead of a UTXO transaction design, as used in Bitcoin and many other cryptocurren-

cies, an account-based design was chosen instead. The advantage of such an approach is

simplicity, speed, and usually lower memory requirements. The only disadvantage of this

approach is anonymity, which is more di�cult to ensure in a DLT design. For this 2nd layer,

solutions are planned.

B. Sending Funds

Because each account blockchain can only be changed by the account holder. A money

transfer can only be done with two transactions. First, account A performs a send trans-

action to account B, then account B requests the transaction by a new receive transaction.

This approach is more complicated compared to blockchains like Ethereum and Bitcoin, but

the advantages lie in the con�rmation process, which can be asynchronous and therefore

very scalable.

Figure 2: Node weight assignment from accounts.
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III. SYSTEM DESIGN

The system is based on a block-lattice-like structure, where each account has its own

blockchain. It uses an optimized consensus voting based algorithm that reduces latency and

network tra�c. The block is optimized for size and speed and represents a user transaction.

The node network is also highly interconnected to further reduce transaction latency.

Figure 3: New block voting process.

A. Consensus Algorithm

Consensus is achieved using a voting-based consenous algorithm and recently PoV (Proof

of Vote) (Li et al. [8]) consensus algorithms become well known in the scienti�c literature.

Like PoW, they are Byzantine fault-tolerant, secure and stable (Zhang [9]). As in ORV

(Open Representative Voting) (LeMahieu [4]), voting weights are determined by the account

holder's selection of a representative. The representative is assigned a voting weight relative

to the balance of all accounts assigned to him, as shown in the Figure 2. This approach

is particularly suitable for feeless systems, since the cost of validating a transaction is low

and without risk. With PoW (Proof of Work) the cost is very high and with PoS (Proof of

Stake) there is potential risk when staking the currency.

Flooding the network directly with votes would lead to message overload and would be
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slow and ine�cient. To limit the number of votes and messages, some systems choose a

middleman who then performs the validation process. While this increases performance, it

decreases resilience to a potential attack. Here, we describe a consensus process in which the

system is not �ooded with votes, but the node receiving the block is tasked with procuring

all the necessary vote weights to satisfy the
[
WT

2
+ 1

]
< Wc condition, where WT is the total

weight of all the coins and WC is the weight of the collected votes. First, the node receiving

the new block collects the votes of the nodes one by one so that the majority rule is satis�ed.

Once the votes are collected and the majority rule is satis�ed, a voting package is created

with the new block and all the votes. This is then sent to all nodes using the network

�ooding procedure described below, shown on Figure 3.

1. Proof of Vote on Blocks

The user creates a block and sends it to a node. The node that receives the block �rst is

responsible for obtaining the required voting majority before it creates the voting package

and injects it into the network. The nodes validate the block and vote independently. The

majority weight is calculated with:

WX
C =

N∑
i=1

WX
i (1)

Where N is the number of votes collected and X is the block voted on. If the majority

condition is not met, N can be increased, which in practice means that a vote is requested

from more nodes. If all or most nodes are requested and no transaction vote majority is

reached, the block is discarded.

B. Smart Contracts Layer

The system is designed to support smart contracts in a standard blockchain based arhi-

tecture. PoS together of with voting is used to select the next block with instant �nality.

Staking nodes are selected based ont he amount staked and a random assigment function.

The last block hash is used as seed, so that all nodes can calulcate the next node turn

without voting.
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C. Network Flooding

In network �ooding, a message received by a node is sent over all outgoing connections

except the one over which it was received (Ashikur et al. [10]). In uncontrolled �ooding,

each node unconditionally distributes messages to each of its neighbors. Without conditional

logic to prevent in�nite repetition of the same packet. In controlled �ooding, two algorithms

are common: SNCF (Sequence Number Controlled Flooding) and RPF (reverse-path for-

warding). In SNCF, the node appends its own address and sequence number to the packet

because each node has a memory of addresses and sequence numbers. When it receives a

packet in memory, it immediately discards it, while in RPF, the node only forwards the

packet.

The system uses a custom SNCF algorithm where each message is given a unique identi�er

and the nodes remember all the identi�ers already processed. The node information is not

added to the original message as this would slow down the process, alter the source message

and increase the size of the message. Nodes also do not send messages to all connections,

but only to connections that are designated for �ooding. This limits network tra�c while

providing multiple direct connections during the voice collection phase. The number of

messages needed for a block con�rmation can be calculated with:

M = N ∗ cf +NW ∗ 2 (2)

Where M is the number of messages N is the total number of nodes in the network, cf is

the number of connections each node provides for �ooding and Nw is the number of nodes

required to achieve majority voting.

D. Partition Tolerance

If the network is split into two completly separate partitions α and β, where α ∩ β = ⊘.

As long one partition α, β satis�es the condition
[
WT

2
+ 1

]
< Wc, consenus can be achieved

and new blocks can be con�rmed (Guo et al. [11]). This is possible because WT is global

and does not change when the size of the network nodes is smaller. If the majority condition

is not satis�ed, the network becomes temporarily unavailable. Here, according to Brewer's

CAP theorem in Diack et al. [12], availability is sacri�ced for consistency and partition
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tolerance.

Table I: Block with all data de�nitions.

Field Description

version block version, for future changes

timestamp transaction timestamp, special importance in the system

blockType block type

previousBlockHash previous block hash value

accountId block for which account

representativeNodeId account chosen representative

balance current account balance

amount transaction amount

sendAccountId receiving account id

receiveBlockHash block we receive funds from

referenceCode payment reference code useful for accounting

publicKeys last valid public keys

E. Block Design

To simplify the design shown in Table I, a common state block was chosen. Having all

state information in each block speeds up transaction times and simpli�es the design. It

also improves node synchronization and the transaction validation process. Although this

increases the memory requirements, this is optimized by state pruning.

The design of the system and block is strongly focused on change �exibility. Once a

distributed system is in production, it is extremely di�cult to change the block design. To

ease the burden, we have incorporated a version code so that the block can change from one

version to another. Also, the serialization process is done in such a way that new �elds can

be added easily.

F. Transaction Types

Although the block structure is the same for each transaction. The system still function-

ally distinguishes between di�erent transactions sent. Flink supports 4 di�erent transaction

types: create, send, receive, and update.
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1. Create Transaction

Before an account can be used to send or receive, it must �rst be opened. The account

is set up with a zero balance. Also, at the beginning, the �rst public keys are injected and

the representative is selected.

2. Receive Transaction

Before transactions can be received, the account must be created. Once it is successfully

created, transactions can be received. The transaction is received by a corresponding block

hash (receiveBlockHash) and sent to this account. Therefore, a block hash must be refer-

enced from which we receive the amount. The same block can only be referenced once. The

received block updates the balance status.

3. Send Transaction

Before sending a transaction for the �rst time, the account must have a non-zero balance.

Once a non-zero value is detected, the money can be sent to an account (sendAccountId).

The account balance is updated with the send and receive block. The balance should never

be less than zero.

4. Update Transaction

An update transaction is usually used to assign the representative (representativeNodeId).

This can also be done for create, update and receive transactions. But this type of transac-

tion is for when nothing is to be sent or received.

G. Multisig Support

Multisig support is an extremely important feature of any large blockchain. Exchanges

and enterprise users will need this in the future to increase security and distribute fund man-

agement responsibilities. However, there are also multisig-like approaches where multiple

private keys can share a public key. These approaches are quite complicated to integrate
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into production environments. Therefore, Flink inherently supports multisig with up to �ve

signatures as a block design for specifying multiple public keys and signatures.

H. Fast Transaction Times

In order for a block to be con�rmed, a quorum of votes must be reached (majority vote

weight ). In order for this to happen quickly, all representatives with high vote weights must

be connected to each other so that messaging and con�rmation occur as quickly as possible.

Each node therefore tries to connect to as many representative nodes as possible. The nodes

are also checked for latency so that the fast nodes are connected �rst.

I. Time-Restricted Transactions

Each block has a creation timestamp. Each transaction can only occur in a prede�ned

time window of, say, 1-10min. If the transaction is not con�rmed in this time window,

it becomes invalid. This measure is to help prevent DOS and keep the backlog small.

Normally DLT systems shop all transactions until they are con�rmed, but this becomes

complicated when a transaction is not con�rmed within the time frame and can wait for days

for con�rmation. This action will result in a transaction either being con�rmed immediately

or cancelled. In this case, the wallet software has to resend the transaction. The system is

designed for low-latency transactions, which makes sense.

Figure 4: Unclaimed block queue.
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J. Unclaimed block queue

Since not all nodes are online all the time and accounts can move from one node to

another. It is di�cult to require second level systems to monitor incoming/unused trans-

actions sent to that account. For this, Flink implements an unclaimed block queue, shown

in Figure 4, which allows an account owner to always correctly list all unclaimed blocks.

The queue is updated in a separate transcation and is limited in size. Account holders must

receive transactions on a regular basis, otherwise they risk not being informed of incoming

transactions. Even if this information is missing, new transactions can be made at any time.

IV. MISCELLANEOUS FEATURES

Flink has some advanced features not normally found in other DLT projects. The func-

tions are mostly modelled after existing banking systems, which makes the transition to a

DLT system easier.

A. Payment Request

Flink introduced something usually found in newer traditional mobile banking solutions.

Where a user can send a payment request to another user. That user then usually just

con�rms the payment with the amount, reference number and description already stored.

In Flink, a payment request is sent to a node, which then redistributes it to all other nodes

online. The wallet system for that user receives the request from the relying node and stores

it in the local database. The nodes do not store payment requests, and the entire system

operates only on the best-e�ort principle. This means that the wallet system and its node

must be online for the request to be received.

B. Quantum Safety

With the development of quantum computers, quantum security is becoming increas-

ingly important. Elliptic curve cryptography is vulnerable to quantum-based attacks, and

quantum-resistant cyphers are not yet widely and fully tested. For this reason, Flink was

designed with cyphers interchangeability in mind. For example, account addresses are not
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created from public keys, but are randomly generated. The currently valid public keys are

speci�ed with the last con�rmed block. This makes it easier to exchange keys and, in the

future, also cyphers.

C. Reference Number/Code

The traditional banking system typically uses payment reference numbers to identify

individual payments. With DLT, each payment is usually sent to a separate address. Because

of Flink's account-based design, an additional payment reference code has been added to

the block. This is a practical approach to tracking payments that is usually missing in DLT

concepts.

V. ATTACK PREVENTION

The most problematic attack point of a feeless payment system are DOS (Denial of Ser-

vice) and DDOS (Distributed Denial of Service)(Lau et al. [13]) attacks. Since transactions

are free, the system is very vulnerable to spam transactions that overload the entire system.

In Flink, many parts of the system are speci�cally designed to prevent such attacks.

A. DOS Attacks

The following describes the most common DOS attacks to which the system is most

vulnerable. DOS Attacks are di�cult to completely eliminate, especially in a system without

fees. However, the system has many approaches to counter such attacks. Overall, according

to the CAP theorem, the system prefers consistency and partition tolerance over availability.

However, availability is potentially sacri�ced only during the active attack phase.

1. Node Over�ow Attack

In this attack, the entity creates multiple node addresses. Since all nodes must be con-

�rmed before they are added to the database, this can place an extreme load on the entire

system. The system protects itself by limiting the number of nodes that can be created per
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day (adjustable parameter). With this protection, the system will function normally under

these conditions.

2. Account Over�ow Attack

This attack �oods the network with multiple accounts. Each node can only publish a

limited number of blocks (including account-creating blocks). For this attack to succeed,

the attacker must have access to a node with a very high weight, since the publication rate

depends on the node's voting weight. Even then, the rate is capped, so the probability of

completely disabling the entire network is low. Also, high weight nodes are usually managed

by crypto exchanges, which are likely to monitor the integrity and status of the nodes.

3. Transaction Over�ow Attack

In this attack, the network is overrun with multiple transactions. As in the previous case,

each node can only publish a limited number of blocks (including account creation blocks).

For an attack to be successful, the attacker must have access to a node with a very high

weight, which is not easy to achieve. Additionally, PoW might be introduced in the future

to further prevent transaction spam.

4. Uncon�rmed Transaction Over�ow Attack

This attack targets each account's uncon�rmed transaction queue. Accounts are required

to con�rm all incoming transactions. Once the queue reaches a certain size, new items are

discarded. This makes it very di�cult to actually compromise the system. The account

holder can still receive transactions that aren't in the queue, but must manually retrieve

them.

5. Brute Force Attack

In the event of a DDOS attack, nodes may be removed from the network. Such an attack

could cause the system to become temporarily unavailable for con�rmations, as the majority
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voting weight wouldn't be reached. The system would recover quickly once the attack is

over.

B. System Integrity Attacks

In these attacks, the attacker is usually trying to gain a �nancial advantage. Usually, they

try to double-spend or something similar. The consensus algorithm ensures the integrity of

the system. All transactions must be con�rmed within a time interval with
[
WT

2
+ 1

]
voting

weight. For the system to be compromised, someone would have to receive a majority voting

weight. In practice this weight is set to a higher number to further increase security.

1. Primary Protection

Since
[
WT

2
+ 1

]
voting weight is quite large, the attacker would have to make large in-

vestments to gain that much voting weight, which is unlikely. Moreover, such investments

would destroy the network and cause the investment to expire.

2. Fork protection

Local forks can occur when an account publishes two transactions with the same previous

block. In this case, both transactions are voted on, but each node can only vote for one of the

transactions. The transaction that reaches
[
WT

2
+ 1

]
will be persisted. If neither transaction

reaches a majority within the speci�ed time interval, both transactions are discarded.

VI. IMPLEMENTATION

In the implementation phase, the decision was made to build the system in a higher

level (managed) programming language. Therefore, C, C++ were not considered. In the

author's opinion, the system closely resembles a IT system with large memory and database

requirements. Such systems are usually limited in performance by the database design and

not by the programming language chosen. Therefore, the reference implementation was

written in Java. The implementation is available on Github as an open source project under

the Apache license.

14



A. Network

The system uses protobuf to serialize messages over a TCP stream. Connections between

hosts are limited to one, which is a full duplex. Connection handling is asynchronous with

low memory requirements, allowing multiple connections.

B. Storage

RocksDB key value store is used for storage. RocksDB is a highly scalable and performant

database with transaction support developed by Facebook.

C. Cryptography

For signing, ED25519 (Bernstein et al. [14]) is used with standard SHA-512 hashing. Key

derivation is based on BIP32 with ED25519 modi�cation in SLIP-0100.

VII. CONCLUSION

Here we present a distributed feeless payment system with fast transaction con�rmation

time. The system is based on a voting-based consensus mechanism with a block lattice data

structure. Since it does not involve mining, the system is highly energy e�cient and can be

operated on modest hardware. The system can be operated by the community with minimal

investment while being secure and reliable.
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